Time-dependent feature allocation models via Poisson Random Fields

The event is taking part on the Friday, Mar 31st 2017 at 11.00
Theme/s: Statistics
Location of Event: Alan Turing 306
This event is a: Public Seminar

Abstract: In a feature allocation model, each data point is described by a collection of latent features, possibly unobserved. For example, we might classify a corpus of texts by describing each document via a set of topics; the topics then determine a distribution over words for that document. In a Bayesian nonparametric setting, the Indian Buffet Process (IBP) is a popular prior model in which the number of topics is unknown a priori. However, the IBP is static in that it does not account for the change in popularity of topics over time. We present the Wright-Fisher Indian Buffet Process (WF-IBP), a probabilistic model for collections of time-stamped documents. By adapting the Wright-Fisher diffusion from population genetics, we derive a stochastic process with appealing properties including that (i) each feature popularity evolves independently as a diffusion and (ii) marginal observations at a fixed timepoint are given by the original IBP. We describe a Markov Chain Monte Carlo algorithm for exact posterior simulation and illustrate our construction by analysing the topics of NIPS conference papers over 12 years. This is joint work with Valerio Perrone, Dario Spano, and Yee Whye Teh.

Report an error on this page

External Speakers

Paul Jenkins, (University of Warwick)